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Abstract: The structure/bonding rela-
tionship in a series of intermetallic
phases of Li with Al, Ga, and In was
investigated by density functional theory
and complemented by a model based on
tight-binding theory and the method of
moments. The combination of these two
approaches provides a simple scheme
which allows for both a comprehensive
understanding of structural trends and

the ability to predict low-energy struc-
tures for a given composition. This
analysis gives a straightforward picture
of phase stability in terms of local geo-

metric features such as triangular,
square, and hexagonal arrangements of
atoms. The approach was extended to
examine the structural properties of
metal-doped clathrate compounds of C,
Si, Ge, and Sn. Clathrate-type phases
based on the frameworks Si172, Ge172,
Si40, and Ge40 are not only likely to be
energetically favorable but may also
exhibit high thermoelectric efficiency.
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Introduction

Understanding the structure and bonding of intermetallic
phases poses a unique challenge to theory. First-principles
calculations can be used to obtain an accurate description of
the structure and physical properties of a material, such as
elastic constants and thermal power. However, often the
complexity of these simulations does not readily allow for the
identification of the underlying physical principles which
govern why the complex structures of metals and alloys are
formed. On the other hand, the alloy designer or solid-state
chemist can still make intermetallic phases and understand
their structure and properties of by using simple models such
as the Zintl ±Klemm concept and Miedema×s rules.[1, 2] A

major achievement was the development of reliable structure
maps[1, 2] that predict which phases can be formed by
combining different elements. As with other models, these
maps are classifications of structures by parameters such as
electronegativity and number of valence electrons and are
empirically derived. Thus, the answer to the fundamental
question of why intermetallic phases form with a particular
structure and stoichiometry is still elusive.

A step towards understanding phase stability, and ultimate-
ly predicting which phase may be obtained for a given
stoichiometry, is a qualitative understanding of the structure
of phase diagrams. Ideally, if we could draw a direct relation-
ship between such concepts as electronegativity and valence
electron concentration to explain why phases form in a given
structure type (ST), we could then rationally design solids.
From the point of view of theory, this type of paradigm would
be useful in materials science to complement computationally
intense first-principles studies. At present, methods based on
density functional theory (DFT)[3] can now discriminate the
total energies of different phases to within fractions of an
electron volt. Yet, to indiscriminately search though a host of
possible phases with DFTmethods can place extreme demands
on resources and time. Therefore, what is required is an
approach to qualitatively screen structures, either by fast, low-
level calculations or, more desirably, simple rules of thumb.

Here we provide such a qualitative approach based on a
simple tight-binding model and analysis of the relationship
between structure and phase stability by the method of
moments.[1, 2, 4±8] This theory differs from traditional methods
of solid-state band theory in that the analysis is performed in
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real space by using the direct link between phase stability and
the moments, �� �

En�(E)dE�Tr(Hn) (n� 0, 1, 2.. .), of the
electronic density of states (DOS) �(E). Within a tight-
binding description of electronic structure, the nth moment is
related to the number of closed paths of order n and hence
intimately connected to local structural features. Hence, these
are the perfect parameters by which to relate the crystal
structure topology to the total electronic energy of the system.
For example, �2 is related to the coordination number, �3 to
the number of triangular arrangements of atoms, �4 is
connected to squares and bond-angle effects, and �5 and �6 ,
among other things, reflect the contribution of pentagons and
hexagons, respectively.[2, 5±8] Previous work using this ap-
proach focused on the relationship between moments analysis
and traditional electron counting rules[7, 8] to provide a link
with traditional bonding concepts. These insights into the
energy/structure relationship form the key to bridging the gap
between the simple models and the full quantum mechanical
first-principles methods.

Here we demonstrate how a relatively simple tight-binding
scheme can be used to understand the structure of phase
diagrams of Zintl-type compounds. In particular, we model
the zero-Kelvin electronic energy stability that would be
obtained from an ab initio calculation that does not include
finite temperature effects for either electrons or nuclei. We
also show how this can be exploited as a practical tool to
complement first-principles studies of novel materials. Some
of these results have been published in prior short commu-
nications,[9±12] whereas the objective of this work is to provide
a more comprehensive and detailed discussion. Previous work
on moments methods and Zintl-phase structures[13±16] focused
upon fixed stoichiometries, in contrast to the approach here,
where we examine the role of variable stoichiometry, as is
necessary to understand phase diagrams.

In the next section, a detailed discussion of the simulation
techniques is presented. This section may be skipped by the
reader less interested in this aspect of the work without loss of
continuity. We then provide a detailed investigation of phase
stability for intermetallics and alloys of Li and the Group 13
elements Al, Ga, and In. A database of state-of-the-art
calculations for Li ±Al alloys[17±21] demonstrates that current
electron structure theory is sufficiently accurate to reproduce
the phase stability, yet a simple picture of the underlying
physics is still lacking. Here we examine bonding in real space
of these compounds and show how a qualitative model allows
us to understand the low-temperature phase diagram. The
simple rules derived from this analysis are then used to make
educated predictions of alternative low-energy Li ±Al phases,
which are verified by DFT simulation. Finally, these concepts
are extended to understanding the phase stability of Group 14
clathrate structures.[22±29] Compounds of this type have
received enormous attention, both theoretical[31±39] and ex-
perimental, due to their interesting electrical transport
properties, most notably superconductivity[30] and high ther-
moelectric efficiency.[9, 40±45] Within this section we present
predictions of novel clathrate-type structures which are not
only energetically compatible with known phases but may
also be suitable for application as highly efficient thermo-
electric materials.

Computational Methods

Tight-binding simulations and moments expansions : We employ the
second-moment-scaled H¸ckel tight-binding model,[46, 47] which has met
with great success in rationalizing structural trends in solid-state phas-
es.[2, 7, 8] The method is described in several reviews[7, 8] and compared with
ab initio electronic structure theory,[48, 49] so the relative performance and
weaknesses of the method are well documented. Therefore, this approach
need not be expanded upon in detail here, except for the specific cases
where methodological changes are introduced.

The structures used for tight-binding simulations were obtained from fully
optimized geometries, including cell parameters, at the DFT level. For the
tight-binding analysis, each main group atom is modeled by including the
valence s and p atomic orbitals. The electropositive alkali and alkaline
earth metal atoms are assumed to transfer all valence electrons to the main
group atoms, and are thus considered to act simply as point charges. We
verified the ionic nature of these interactions in the Na ± Si and Li ±Al
phases at the DFT level of theory in a previous communication.[9, 10] Here
we neglect the ionic contribution to the total electronic energy which was
included in previous studies,[48±50] and only consider the covalent or band-
structure energy. This simplifies our computational scheme by removing
the need to include up to four extra parameters (and their dependence
upon electron concentration) for an ionic term. This approximation is most
valid when the relative charges on the ions are low and the number of
covalent bonds between main group atoms is high, that is, large bonding
and small ionic energies. Note that in cases such as lanthanide compounds
of Group 16 elements,[50] in which there are few covalent bonds and large
formal charges, a predomint role of the covalent energies in ultimately
determining the final structure was observed. Only interactions between
main group atoms whose distance falls within the first peak of the radial
distribution function are included in the tight-binding analysis, and all other
Hamiltonian matrix elements are set to zero. This simplifies the model and
avoids the tendency of H¸ckel methods to overestimate interactions with
second-nearest neighbors. A mesh of at least 1000 k points over the
symmetry-inequivalent portion of the Brillouin Zone (BZ) was used to
insure convergence of moments and energies.

The methodology adopted here differs from previous implementations in
two respects. First, the �2 of the various structures are scaled by a simple
renormalization of the eigenvalue spectrum, as opposed to iteratively
rescaling the size of the system such that all phases have identical second
moments. The structural energy difference theorem[47] (on which the
second-moment scaling hypothesis is based) applies only for small
variations in the system size, for which the width but not the shape of the
DOS is affected. Thus, this further approximation is also appropriate. This
has the advantage of reducing the computational effort to one-eighth to
one-tenth of that of the former approach. We validated this assumption by
repeating the simulation of the Li ±Al phase diagram and found that the
two approaches yield energy difference curves which are qualitatively
identical in that the electron counts over which phases are stable differ by at
most 0.02 e per atom. Thus, the approach is reduced to performing a single
H¸ckel calculation for each structure to obtain eigenvalues, which are then
manipulated to obtain DOS and moments.

A second modification to previous studies is in the way in which we
obtained the H¸ckel parameters for our simulations. All orbital exponents
are obtained directly from fitting the radial wavefunction obtained from
scalar-relativistic LDA-DFT atomic calculations to single-exponent Slater
functions. We do not necessarily use the ground-state atomic configura-
tions, but employ that used to generate transferable pseudopotentials (see
ref.[51] for a description of the configurations used for s, p, and d states of
each atom). The energy separation between the ionization values of the s
and p electrons, denoted�Hii, is also obtained from the atomic calculations.
This leaves only one parameter, namely, the absolute energy level of the
atomic p orbital. For this, we take as an initial value the ionization energy
from a well-established parameter set[52] and allow it to vary to obtain the
best agreement for the trend of structure type versus number of valence
electrons for phase boundaries of the Li ±Group 13 element phase
diagram. The values of the parameters obtained form the above procedure
for Group 14 elements are given in Table 1. The results of these tight-
binding simulations are qualitatively insensitive to the parameters used and
to the small variation between parameters of elements of Groups 13 and 14.
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In general, the ordering of which phases are stable with respect to
increasing electron count is not altered by variations of this parameter over
several electron volts, but the electron count at which a given phase
becomes stable can change by as much as 0.5 e per atom. Hence, we
restricted ourselves to only one sp block atom for each row of the periodic
table, and this leads to greater simplification of the model. The parameters
accurately account for several key trends as one goes down a column of the
periodic table. First, the ionization potential decreases from C to Sn.
Second, both s and p orbital exponents become more contracted, and the
relative contraction of the s outweighs those of the p. Finally, our
parameterization for first row sp-bonded elements leads to values which
are essentially identical to the traditional parameters for C, and thus we
opted to use these.
The results of the tight-binding analysis were examined within the method
of moments[2, 5, 6] which was adapted to our purpose by the following
prescription. First, an accurate representation of the DOS �(E) and its
moments �i �

�
Ei�(E)dE is obtained from our tight-binding calculation.

The eigenvalues are then renormalized such that �0� 1, �1� 0, and �2�
�2(diamond), where �2(diamond) is the second moment for the diamond
structure. Note that the choice of �2 does not alter the phase ordering due to
renormalization of the eigenvalue employed here. The results of the tight-
binding calculation can then be examined in terms of the contributions of
the specific moments by the following procedure. The DOS can be
constructed from its moments via a continued fraction [Eq. (1)], where IM
indicates the imaginary part, f is a function which terminates the fraction
(see below), and the coefficients an and bn are obtained from the moments
�i via determinants An and Bn [Eqs. (2) and (3)] and the recursion formula
[Eq. (4)], where a0� 1, a1�A1, b0� 0 (by definition).

Successive terms in the continued fraction of Equation (1) account for the
contribution of even increasing moments and allow us to build up the DOS.
The above algorithm for obtaining the coefficients in Equations (2) ± (4)
differs from the formulas presented previously in ref. [5, 6] for the
calculation of bn in having greater numerical stability.

Termination of the continued fraction to allow for accurate evaluation has
been the subject of several studies.[53, 54] We adopt the simplest of these
schemes by noting that for most systems an and bn approach limiting values
afinal and bfinal , thus providing the relation of Equation (5), which can be
solved to give Equation (6).

This provides the simple solution Eu��bfinal� 2
�

afinal and El��bfinal�
2
�

afinal where Eu and El are the highest and lowest orbital energies.
Equation (6) can be used to truncate Equation (1) at any given value of an

or bb, and this effectively eliminates the information contained in the higher
order moments. This in principle allows us to examine how the various
moments, and hence how the local structural motifs, affect the total
electronic energy and ultimately the phase stability.

DFT simulations and properties derived from the Fermi surface : To
validate the theoretical predictions of the simpler tight-binding model and
to obtain predicted properties of these phases, we performed calculations
based on DFT.[3] In particular, the core electrons were modeled by an
ultrasoft pseudopotential[55] including only the outermost s and p electrons
in the valence shell. These electrons were expanded in a basis set of plane
waves with a cutoff energy of 1.5 times that of the recommended value for
convergence to high accuracy. A Monkhorst ± Pack[56] 10� 10� 10 mesh of
k points was used for BZ integration to insure convergence of the total
energy to within 0.01 eV per atom, with the exception of X136 and X172 (X�
C, Si, Ge, Sn). For these phases the large unit cells allowed smaller kmeshes
of 6� 6� 6 and 4� 4� 6 (X136 and X172, respectively) to give the same level
of convergence. Results were obtained within the local density (LDA) and
generalized gradient (GGA)[57] approximations for the Li ±Al system. As a
gauge for the accuracy of our calculations relevant structural parameters
are compiled in Table 2 for the Li ±Al system. As expected, both LDA and
GGA provide accurate lattice constants and bond lengths within about 2%
of those observed experimentally. The values provided by LDA are
characteristically lower but in agreement with those of previous stud-
ies.[17±21] Both functionals reproduce the trend of decreasing Al�Al bond
length with increasing Li concentration. Only LDA calculations were
employed for the Group 14 clathrate compounds. The validity of the rigid-
band approximation has been discussed at length elsewhere,[9] and
analogous calculations performed on some of the current structures

Table 1. Parameters used in tight-binding simulations (see text for details).

Element n �s Hss �p Hpp

C 2 1.625 � 21.40 1.625 � 11.40
Al/Si 3 1.70 � 15.50 1.38 � 7.30
Ga/Ge 4 2.31 � 13.30 1.60 � 7.30
In/Sn 5 2.60 � 12.60 1.90 � 6.19

Table 2. Structural parameters for Li ±Al binary phases.

Phase Structure type Valence electrons No. of Al�Al bonds Lattice constants [ä], exptl (LDA, GGA)[a] Al-Al [ä], exptl (LDA, GGA)[b]

Al Cu (fcc) 3 12 a� 4.05 (3.99, 4.04) 2.86 (2.82, 286)
LiAl3 Au3Cu 3.33 8 a� 4.01 (3.96, 4.01) 2.83 (2.79, 2.83)
LiAl NaTl 4 4 a� 6.36 (6.23, 6.31) 2.76 (2.70, 2.73)
Li3Al2 Bi2Te3 4.5 3 a� 4.50 (4.37, 4.43) 2.74 (2.67, 2.71)

c� 14.25 (13.75, 13.92)
Li9Al4 Li9Al4 5.25 2 a� 19.15 (18.45, 18.69) 2.64 (2.65, 2.68)

b� 5.42 (5.23, 5.32)
c� 4.50 (4.38, 4.44)

Li2Al3 Ga2Ti3 3.67 6.67 a� (6.21, 6.30) (2.79, 2.83)[b]

c� (3.97, 4.03)
Li5Al4 Li5Ga4 4.25 5.50 a� (4.37, 4.42) (2.69, 2.71)[b]

c� (8.19, 8.23)

[a] Calculated values. [b] Average.
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yielded similar findings. DFT calculations were performed with the Vienna
Ab Initio Software Package (VASP).[58±60]

The thermoelectric figure of merit (ZT) of a material is governed by
Equation (7), where S is the temperature-dependent Seebeck coeffi-
cient,[61] � is the electrical conductivity, and � is the thermal conductivity.
For crystals S(T) can be calculated, within the approximation of constant
relaxation time �, from a knowledge of the DOS �(E), the velocity of the
electrons at the Fermi level v, and the Fermi distribution [Eq. (8)],[61] where
Lx is given by Equation (9), such that [Eq. (10)], and for metals at low
temperature [Eq. (11)].

Thus, the Seebeck coefficient is related to the reciprocal electrical
conductivity and the first derivative of the conductivity near the Fermi
energy. Here it is assumed that each partially occupied band behaves
independently. In general, S is largest in systems having partially occupied
bands with low v and hence only weak dispersion. Thus, structures with flat
bands at and around the Fermi level are the best candidates to obtain large
values of S.

Transport properties of the hypothetical X40 clathrate phases (see below)
were modeled by a similar prescription to our previous work on Na-doped
Si clathrate phases.[9, 62] BZ integration was carried out by using a modified
Shankland ±Koelling ±Wood band-interpolation scheme.[63, 64] First, we
calculated eigenvalues on relatively coarse three-dimensional k point
grids. Second, these eigenvalues are interpolated on the basis of lattice star
function expansion to give the eigenvalues on dense k point grids. For each
compound, 1000 and 10000 k points in the first BZ are used as coarse and
dense k point grids.

The reliability of the ultrasoft pseudopotential calculation was examined by
comparing the results with full-potential linearized augmented plane wave
(FLAPW) code.[65] The reasonable agreement between the two methods
confirms the reliability of our data.

Results and Discussion

Phase diagrams of Li ±Group 13 intermetallics : Phase order-
ing with increasing Li concentration : Lithium was chosen as
alkali metal due to its relatively small ionic radius, which thus
lessens the effects of the size of alkali metal cation and may
lead to structures with discrete clusters.[66] This allows us to
examine the energy dependence of infinite networks. Here we
assess the validity of using a moments scheme to account for
boundaries on the phase diagram of a variable ratio of Li to
Group 13 element.

The low-temperature Li ±Al phase diagram is fairly sim-
ple[67] and comprises five known phases: Al (fcc), LiAl (NaTl
ST), Li3Al2 (Bi2Te3 ST), Li9Al4 (Li9Al4 ST), and elemental Li
(bcc at 300 K). These structures are shown in Figure 1 in order
of increasing Li to Group 13 atomic ratio. We also include the

metastable phase LiAl3 (AuCu3 ST) in this discussion, which
on the basis of electronic energy (as opposed to free energy) is
energetically compatible with the stable phases. Similar to
Li ±Al the phase diagrams of Li ± In and Li ±Ga also contain
the 1:1 phase in the NaTl ST and the 3:2 Bi2Te3 ST (see
Figure 1). However, both In and Ga form an additional 5:4
phase with the Li5Ga4 ST, as well as a 2:1 phase of the Li2Ga
ST, in contrast to the 9:4 stoichiometry of Li ±Al. Most
interesting is the differences in the structures found at low Li
concentration. Elemental Al has an fcc structure, whereas Ga
has a unique seven-coordinate structure (see ref. [68] for
detailed analysis), and In has a tetragonally distorted fcc
phase. In addition, Li ±Ga exhibits a phase with stoichiometry
3:14 (Li3Ga14 ST).

Consider the relationship between the valence electron
concentration and the structural motifs exhibited by the Al
sublattices in the series of Li ±Al phases. The first member,
elemental Al, has three valence electrons per atom
(3 eatom�1) and a total of twelve Al�Al contacts. LiAl3 has
4.33 eatom�1, LiAl 4 eatom�1, Li3Al2 4.5 eatom�1, and for
Li9Al4 5.25 eatom�1. The trend in the structural changes and
the band filling bears a striking similarity to the well-known
trends for solid-state elemental phases, as exemplified by the
sp-valent elements in the third row of the periodic table.[68] In
this case, the Cu (1 eatom�1) and Zn (2 eatom�1) structures
are closest packed with twelve nearest neighbors, while Ga
(3 eatom�1) has a coordination number of seven, Ge
(4 eatom�1) is four-coordinate and exists in the diamond
structure, As (5 eatom�1) forms sheets (similar to the
aluminum layers of Li3Al2) with a coordination number of
three, and Se (6 eatom�1) exists in two-coordinate chains. This
trend, which can be rationalized by using the language of
moments,[68] strongly indicates that an analogous explanation
underlies the phase stability in Li ±Al binary systems.

This is validated by the moments analysis of the DOS.
Figure 2a compares the total energy differences, obtained
from tight-binding calculations, between the various Al
sublattices to that of Li ±Al as a function of the number of
valence electrons. The convention of these curves is that the
structure with the highest energy for a given electron
concentration is most stable at that electron count. The
total-energy curves can be reconstructed by expanding the
DOS in terms of contributions from the various moments by a
continued fraction expansion, which can be truncated at a
given moment. This allows the determination of the relevant
moment, and hence the geometrical features, that control the
phase stability (see Figure 2b,c). The relationship of the shape
of these curves to the moments has been fully developed
elsewhere. In general, the number of nodes (including the two
end points) in these curves is equal to the moment which is
most responsible for the energy difference between two
structures.

This modest calculation provides values for the phase
boundaries which are in good agreement with experiment.
Figure 2a shows that LiAl is stable at 3.1 ± 4.4 eatom�1,
followed by Li3Al2 between 4.4 eatom�1 and 5.6 eatom�1,
and Li9Al4 becomes stable for electron counts greater than or
equal to 5.6 eatom�1 (slightly higher then the experimental
5.25 eatom�1). Elemental Al is the most stable structure at



Lithium Group 13 Intermetallics and Metal-Doped Group 14 Clathrate Compounds 2787±2798

Chem. Eur. J. 2002, 8, No. 12 ¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002 0947-6539/02/0812-2791 $ 20.00+.50/0 2791

low electron count (3 eatom�1), and the energy difference
curve has three nodes, which is indicative of a third-moment
effect. This is caused by the the large number of triangular
faces of the polyhedra in an fcc structure. This observation is
corroborated by the fact that the reconstructed energy-
difference curve converges fully with the exact result in terms
of amplitude and crossover point by considering only up to the
third moment. The stability of the chains in Li9Al4 relative to
LiAl at high electron counts can be traced back to the large
fourth moment and its relationship to the coordination

number.[8] In general, scaling �2 shifts coordination number
into the fourth moment, which increases with decreasing
coordination number due to the renormalization of the
eigenvalues. The Li3Al2 curve is only fully converged when
the sixth moment is included, even though it has four nodes.
This behavior is due to the importance of the large number of
six-membered rings in the LiAl structure and in the Al sheets
of Li3Al2. These rings lead to stability at the half-filled band,
but are less stable just above and below. In general, the
method reproduces the approximate electron count at which

Figure 1. Structures of Li ±Group 13 compounds. fcc (Al and In). �-Ga, Li3Ga14, AuCu3 (metastable LiAl3), Ti2Ga3 (hypothetical Li2Al3), NaTl (LiAl, LiGa,
and LiIn), Li5Ga4 (Li5Ga4 and Li5In4), Bi2Te3 (Li3Al2 Li3Ga2, and Li3In2), Li2Ga (Li2Ga and Li2In), and Li9Al4. Group 13 atoms are represented by gray
spheres, and Li atoms by small black spheres. In accordance with the Zintl description, only bonds between Group 13 atoms are drawn.
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Figure 2. Energy-difference curves for the stable phases of Li ±Al,
obtained by comparing the total electronic energies from tight-binding
calculations (a). The curves are reproduced by continued fraction
expansion of the DOS with a series of moments truncated at �4 (b) and
�6 (c). The convention of these plots is that the structure with the highest
energy at a given fractional band filling is the most stable at that electron
count.

specific structural motifs are found to be stable with maximum
observed errors of 0.4 eatom�1.

Similar trends are found for both the Li ±Ga and Li ± In
phase diagrams (Figure 3). Indium is in a distorted fcc phase
and dominates at lower electron counts. However, this phase
is not stable at 3 eatom�1 for Ga, for which �-Ga is dominant
over fcc Ga. Each Ga atom in �-Ga participates in six
triangles, whereas a slight increase in the number electrons
makes the Li3Ga14 phase more stable. This is due to the lower
third moment of Li3Ga14. In this phase each Ga atom is
contained in an icosahedron and is involved in five triangles
per atom. Above the half-filled band for both In and Ga the
Li5Ga4 ST is observed, as well as Bi2Te3. In Li5Ga4 the most
prevalent structural component is a bilayer of puckered
hexagonal sheets. These same sheets also exist in the Tl
sublattice of the NaTl structure, as can be readily seen by
looking down the (111) crystallographic axis. One can derive
the structure of Li3Ga2 by breaking the Ga bonds between
each sheet in the (111) direction, and the bilayer of Li5Ga4 by
performing this procedure for alternate layers only. This
natural progression is expressed in the language of moments

Figure 3. Energy-difference curves for the stable phases of Li ±Ga (a) and
Li ± In (b), obtained by comparing the total electronic energies from tight-
binding calculations. The convention of these plots is the same as Figure 2.

by a reduction of both coordination number (�4 effect) and
the number of six-membered rings (�6 effect). Finally, both
phases exhibit chain structures at an electron counts above
5.4 eatom�1, which is slightly higher then the observed value
of 5.0 eatom�1.

The model also provides qualitative insights into trends in
the phase boundaries of the different Group 13 elements. For
instance, the results of Figure 3 show that for Ga the �-Ga
structure is preferred over the fcc structure, but it for In it is
destabilized. This is due to the different weighting of the
triangular motifs in the third moment as a function of the
orbital exponents. Likewise, the Li9Al4 ST is less stable then
the Li2Ga ST for both Ga and In as a result of a weak fourth-
moment effect. This latter observation is less pronounced for
Ga, for which the chains are essentially iso-energetic, and in
the former case for fcc In versus �-Ga. In such cases the
reliability of the method may depend on variables such as the
structure used in the simulation and k space sampling.

Overall, a simple moments model accounts for the trends in
bonding pattern versus electron concentration across the Li-
doped Group 13 compounds. The moment analysis does more
than just qualitatively account for the ordering of stable
structure types; it also provides a unique insight into the local
structural motifs that stabilize them. At low electron count,
the preferred structural features are triangular faces. Hex-
agons are favored around the half-filled band, followed by
squares and chains at increasing numbers of valence electrons.

Alternative structures : To illustrate the utility of this approach
in designing and predicting new structures we now focus on
considering phases which have not been observed experi-
mentally. We illustrate how the structural trends can be
applied to understand why alternative structures of LiAl3 and
LiAl which have been suggested previously[20, 21] are not the
energetic ground state.
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The energy difference curve between the hypothetical BiF3

STand the AuCu3 STof LiAl3 is shown in Figure 4a. Its shape
is indicative of a third-moment effect, which is related to the
fact that in BiF3 there are too few triangles for it to be stable at

Figure 4. Energy-difference curves for alternative LiAl3 and LiAl struc-
tures. The convention for these plots is the same as in Figure 2. Li is
represented by small black spheres, and Al by large gray spheres.

low electron count. Similarly, if one considers LiAl in the CsCl
lattice with a simple cubic Al sublattice or the AuCu STwith
square sheets of Al, neither has the hexagons which are
required at the half-filled band. Both of these phases have too
many squares of atoms and are thus more stable at higher
electron count, as illustrated by the strong fourth-moment
component of the energy difference curves in Figure 4b. This
then rationalizes the results of ab initio simulation[20, 21] and
provides us with confidence that our approach can be used for
structural prediction.

An important aspect of phase stability is the prediction of
which phase can be formed at a given stoichiometry. To
illustrate the power of the moments approach, we consider
two hypothetical stoichiometries, Li5Al4 and Li2Al3. The
former seems a likely candidate to be a stable phase when one
considers the phase diagrams of Li ± In and Li ±Ga. This is
borne out in the energy difference curves of Figure 5a, which
show a small region of stability for the Al bilayer between
those of LiAl and Li3Al2. As with Li3Al2, a moments
decomposition of this result requires up to �6 for proper
convergence due to the importance of both of these factors. To
test this conclusion, the structure of Li5Al4[20, 21] was optimized

Figure 5. Energy-difference curves. a) Li5Al4 (Li5Ga4 ST) relative to LiAl
and Li3Al2. b) Li2Al3 (Ti2Ga3 ST) and LiAl3 relative to Al and LiAl. The
convention for these plots is the same as in Figure 2.

at the DFT level, and its total electronic energy was compared
with respect to disproportionation into LiAl and Li3Al2. Both
LDA andGGA find that disproportionation is unfavorable by
about 1 ± 2 kcalmol�1, and this suggests that on a strictly
energetic criterion this phase could be stable. This criterion is
not sufficient to prove this phase is stable, as one must actually
consider free energy; however, this point is not the current
objective. What is important is that an energetically viable
structure was arrived at in a very simple and rational way
based on a real-space understanding of the structure/bonding
relationship.

As a second and more rigorous example, the series Al,
LiAl3, and Li2Al3 (3.67 eatom�1), is considered. The analysis
of structural trends as presented so far allows us to anticipate
a few important features even before performing any
calculations. From a comparison with the trends discussed
above, we expect that the number of Al�Al bonds per atom
must be between 4 and 8, intermediate between those of LiAl3
and LiAl. Furthermore, the number of triangular motifs
should decrease, accompanied by an increase in the number of
hexagons, which are stable near the half-filled band. To test
this hypothesis in an unbiased way we performed DFT
calculations and geometry optimizations for Li2Al3 in eleven
different A2B3 structures.[70] This search yielded the Ga3Ti2[69]

ST (see Figure 1) as the most likely candidate, which confirms
the analysis based on structural motifs. Like LiAl3, this Li2Al3
phase may be constructed from a supercell of fcc Al by
replacing some of the Al with Li atoms, and it also contains
Al6 octahedra as building blocks. The main difference is that
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in LiAl3 these octahedra are joined to each other at all six
corners, but in Li2Al3 there are two inter-octahedral Al�Al
bonds at four of these corners, which allows for the presence
of six-membered rings and results in two eight-coordinate and
four six-coordinate Al atoms. The moments analysis of LiAl3
and Li2Al3 relative to Al and LiAl is shown in Figure 5b. Both
of these phases are energetically favored relative to Al for
electron counts greater than 3 eatom�1 due to the decrease in
the number of triangles in each structure relative to the fcc
structure, which is expressed as a difference in �3 . However,
both are less favorable than LiAl for valence electron counts
less than 3.2 eatom�1, because they have too many triangles.
This finding correlates well with DFT calculations, which
showed that Li2Al3 is unstable with respect to disproportio-
nation into Al and LiAl by about 2 kcalmol�1. Thus, again we
are able to rationally pick structures which are energetically
competitive with known phases.

Group 14 clathrates : Here we demonstrate how our approach
can be exploited as a practical tool for studies on novel
materials. We apply our analysis to understanding the phase
stability of novel Group 14 clathrates and investigate their
thermoelectric properties. Although there has been much
theoretical work on Group 14 clathrates,[31±38] none of these
studies has focused on examining the relationship between
phase stability and doping level. Specifically, we sought
alternatives to the experimental structures,[22±29] determined

the amount of electropositive metal dopant needed to
stabilize these phases, and determined whether they have
desirable thermoelectric properties. Note that in these com-
pounds resonant phonon scattering,[9, 44, 45] in which the
localized vibrations of the dopant atom couple with the
phonon modes of the clathrate framework, can lower the
overall thermal conductivity, and this makes them desirable
for practical application. This mechanism was shown to be
operational in known Na ± Si compounds[9] and is likely to also
occur in similar species. Moreover, removal of some of the
alkali metal atoms allows the doping level to be systematically
altered, and the electronic component of thermal power may
thus also be maximized.

We begin this discussion with a description of a series of
representative cage frameworks for these clathrate phases.
See Figure 6 for graphical representations, and Table 3 for a
summary of the cage types and an analysis of which metal
atoms fit in the cages. For each structure the average distances
between the centers of the constituent polyhedra and their
vertices was calculated. The van der Waals radius of the
corresponding framework atom was subtracted from this
value, and the remainder represents the radius of the cavity in
the cage which is available for an alkali or alkaline earth metal
atom. The problem is that the dopant atom can fill the
accessible space or it can rattle around in it. Comparison of
our analysis with the known compounds of clathrate-I shows
that we can accept values of approximately 60 ± 110% for the

Figure 6. Representative Group 14 clathrate cage frameworks.
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ratio of the radii of the cation and the cavity. Recent
experimental results show that when a mixture of alkali and
alkaline earth elements is used one can synthesize new
structures.[24, 26, 27, 71, 72]

Representative structures chosen from our study are
described below. The sodalite structure X12 (X�C, Si, Ge,
Sn) is composed of both four- and six-membered rings. This

ST has 12 framework atoms in its unit cell[73] which form fused
truncated octahedra of 24 atoms (T24). The notation mi is used
to denote the presence of i m-angular faces; thus, the building
block of X12 can be expressed as 4686, since it has six square
and six octagonal faces. X34 is a hexagonal structure seen in
clathrate hydrates[74] which contains four-, five-, and six-
membered rings that form a twenty-atom polyhedron with

Table 3. Description of clathrate frameworks. For each structure we describe the cage type (for those cages which are most likely to hold guest species) and
the location of the cage center. An estimate of the ions which may fit into several cages is also provided with a percentage ionic radius/cage diameter ratio.
See text for details.

X12

cages: 4668 at [1/2,1/2,1/2]
ionic radii for cations per cage

C 0.719 Li(83)/Mg(90)
Si 1.609 Rb(92)/Ba(84)
Ge 1.744 Cs(97)/Ba(77)
Sn 2.282 Cs(74)
X34

cage: 512 at [1/2,1/2,1/2]
cage: 435663 at [2/3,1/3,0]
cage: 51264 at [0,0,0]

cationic radii per cage
C 0.452 0.478 1.228 Be(69), Be(65), Na(77)/Ca(81)
Si 1.182 1.226 2.373 Na(80)/Ca(84)/Sr(96), Na(77)/Ca(81)/Sr(92), Cs(71)
Ge 1.278 1.327 2.520 big/too big
Sn 1.742 1.800 3.167 big/too big
X38

cage: 512 at [1/2,1/2,1/2]
cage: 51262 at [1/4,1/2,0]

cationic radii per cage
C 0.722 0.556 Li(83)/Mg(90), Be(56)/Li(108)
Si 0.491 (1.001) 1.148 Mg(65)/Na(95)/Ca(99), Na(83)/Ca(86)/Sr(98)
Ge 0.668 (1.212) 1.359 Li(90)/Mg(97)/Na(78)/Ca(82)/Sr(93), Sr(83)/K(97)
Sn 1.598 1.789 Sr(71)/K(83)/Ba(84)/Rb(93), K(74)/Ba(75)/Rb(83)/Cs(94)
X40

cage: 512 at [1/2,1/2,0]
cage: 51262 at [0,0,1/4]
cage: 51263 at [1/3,2/3,1/2]

cationic radii per cage
C 0.432 0.699 0.798 Be(72), Li(86)/Mg(93), Li(75)/Mg(81)
Si 1.160 1.543 1.691 Na(82)/Ca(85)/Sr(97), K(86)/Ba(87)/Rb(96), K(79)/Ba(80)/Rb(88)/Cs(100)
Ge 1.254 1.657 1.813 Na(76)/Ca(79)/Sr(90), K(80)/Ba(81)/Rb(89), K(73)/Ba(74)/Rb(82)/Cs(93)
Sn 1.716 2.144 2.348 K(78)/Ba(79)/Rb(86)/Cs(98), K(62)/Ba(63)/Rb(69)/Cs(79), Rb(63)/Cs(72)
X46

cage: 512 at [1/2,1/2,1/2]
cage: 51262 at [1/2,0,1/4]

cationic radii per cage
C 0.449 0.680 Be(69), Li(88)/Mg(96)
Si 1.177 1.524 Na(81)/Ca(84)/Sr(96), Na(62)/Ca(65)/Sr(74)/K(87)/Ba(89)/Rb(97)
Ge 1.273 1.634 Na(75)/Ca(78)/Sr(89), Sr(69)/K(81)/Ba(83)/Rb(91)
Sn 1.735 2.148 Sr(65)/K(77)/Ba(78)/Rb(85)/Cs(97), K(62)/Ba(63)/Rb(69)/Cs(79)
X136

cage: 512 at [0,0,0]
cage: 51264 at [3/8,3/8,3/8]

cationic radii per cage
C 0.449 0.875
Si 1.179 1.828
Ge 1.272 1.947
Sn 1.737 2.512
X172

cage: 512 at [0,0,0] and [0.75014,0.56576,1/2]
cage: 51262 at [0.17815,x,0.24327] and [0.3732,0.9699,1/2]
cage: 51263 at [0.89533,0.10467,1/2]

cationic radii per cage
C 0.492 0.441 0.690 0.686 0.786
Si 1.156 1.169 1.536 1.530 1.682
Ge 1.250 1.264 1.647 1.641 1.801
Sn 1.707 1.721 2.148 2.142 2.320
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twelve pentagonal faces (512, i.e. , a dodecahedron). By
addition of atoms to this polyhedron, other types of cages
can be built, which differ in the number of hexagonal faces:
T24 (51262), T26 (51263), and T28 (51264). X38 is seen in the
amalgams A3Hg20 (A�Rb, Cs)[75] and consists of three and
four-membered rings. This ST differs from clathrate-I in the
multiplicity of one of the framework atoms and leads to cages
with an icosahedron (320) and a 20-atom polyhedron (3124862).
X40, proposed as a structure of porous carbon,[76] contains only
five- and six-membered rings. These rings generate three T20,
two T24, and two T26 polyhedra per unit cell. X172 has similar
types of cages to X40 and is observed for bromine hydrate.[77]

In addition, we compare these phases to the framework of the
known clathrate phases: X46 clathrate-I, which has two T20 and
six T24 cages; X136 clathrate-II, which has sixteen T20 and eight
T28, both of which contain five- and six-membered rings; and
the diamond structure X8, which is a known form of elemental
C, Si, Ge, and Sn. Finally, it is noted that these frameworks are
in no way a comprehensive enumeration of all possible
clathrate-type lattices, but they are sufficient for our current
purposes to relate local structure to phase stability.

A useful measure of the stability of these phases is the
relative energy of the undoped structures, as given in Table 4.
The X8 (diamond) structure is the lowest in energy for all
elements. The next lowest in energy are the known phases X46

and X136. What is most surprising is that X40 and X172 are only a
few hundredths of an eVatom�1 higher in energy then these
two phases. Most notably, Sn40, Sn46, Sn136, and Sn172 are all
isoenergetic within the accuracy of our calculations, and the
situation for Ge is similar. The X34 phase is higher in energy
than these phases, but much less so then either the X12 and X38

structures.
The tight-binding scheme predicts identical trends as the

full DFT calculations, with the exception that the energy
differences are larger, especially for the least stable phases.
However, the tight-binding cal-
culations are less computation-
ally demanding and thus may
serve as a quick method for
screening phases. Another ad-
vantage of the tight-binding
scheme is that the structures
can be studied at any desired
electron count to assess the
dependence of energy on the
number of valence electrons.
For example, Figure 7 shows
energy-difference curves for
Ge12, Ge38,and Ge40 phases rel-
ative to Ge8. There is no qual-
itative difference between the
curves for Ge40 and those of the
remaining phases Ge46, Ge136,
and Ge172, and they are there-
fore omitted for clarity. Our
analysis indicates that Ge12 is
less stable than diamond at
around 4 eatom�1 due largely
to a fourth-moment effect,

which results from the presence of the square faces. This
framework is favorable above 5.5 eatom�1, but it is unlikely
that a suitable guest atom can be found which would donate
such a large number of electrons. Thus, one would need to
additionally substitute Group 15 elements into the framework
to possibly obtain this species. The Ge38 structure is favored at
low electron counts due to the large number of triangles (�3

effect) and thus unstable around 4 eatom�1. Stabilization of
this structure would require electronegative dopant atoms
and/or Group 13 framework atoms. The Ge40 phase however,
is stable above 4.2 eatom�1 due to the five-membered rings
and, like the known phases, can be stabilized by doping. The
same applies to Ge136, Ge46, and Ge172 which exhibit the same
behavior as Ge40 largely due to the similarity in their

Table 4. Relative energies [eVatom�1] of clathrate frameworks Xn at
4 eatom�1 from LDA and tight-binding (TB) approaches. See text for
description of structures.

n C Si Ge Sn

LDA
8 0.00 0.00 0.00 0.00

12 0.46 0.26 0.22 0.17
34 0.20 0.11 0.08 0.05
38 2.16 0.54 0.43 0.25
40 0.18 0.11 0.06 0.04
46 0.16 0.09 0.05 0.03

136 0.12 0.07 0.04 0.02
172 0.17 0.09 0.05 0.03
TB

8 0.00 0.00 0.00 0.00
12 2.01 1.06 0.92 0.49
34 0.51 0.28 0.27 0.13
38 3.62 4.56 3.89 2.74
40 0.18 0.18 0.19 0.11
46 0.15 0.15 0.16 0.08

136 0.10 0.11 0.13 0.05
172 0.15 0.15 0.16 0.07

Figure 7. Energy-difference curves for the Ge12 (solid line), Ge38 (dashed line), and Ge40 (long dashed line)
phases relative to the diamond structure. The convention for these plots is the same as in Figure 2.



Lithium Group 13 Intermetallics and Metal-Doped Group 14 Clathrate Compounds 2787±2798

Chem. Eur. J. 2002, 8, No. 12 ¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002 0947-6539/02/0812-2797 $ 20.00+.50/0 2797

structures. The same trends are found for Sn, Si, and C as well.
In general, structures with either four- or three-membered
rings are not energetically compatible for electron counts
around 4 eatom�1 as compared with structures consisting of
five- and six-membered rings.

To understand why X40 and X172 have not been observed,
with the notable exception of the recent report of Sn172,[72]

even though their energies are comparable with those of
known phases it is necessary to examine the size of the cages
in these materials. Both frameworks consists of 20-, 24- and
26-membered polyhedra (see Table 3) into which electron-
donating atoms can be intercalated. However, the disparity in
size between these cages is large, and it would require either a
ternary or quaternary composition to provide the ions that fit
in the cages. For example, for Ge the 26-atom cage is large
enough to accommodate Rb atoms, but the remaining two
cages can only accommodate atoms no larger than K and Na.
Since, to our knowledge, no such quaternary phases have been
studied it is not surprising that these structures have not been
observed. Moreover, our analysis suggests that it may indeed
be possible to stabilize carbon-based clathrates by using Be
and Li as dopants.

We now turn to the question of whether these materials are
suitable for applications in thermoelectric devices. To inves-
tigate the thermal power of these phases we calculated the
Seebeck coefficient S for fully optimized phases of Na3K2Rb2-

Si40, Na3K2Cs2Ge40, and Li4C40, all of which may result from
the above doping scheme. Similar to the known clathrate
phases at high doping levels, these compounds are calculated
to have low values of S at 300 K of about 5 ± 10 �VK�1 and
thus would not be useful thermoelectrics.[9, 40, 44, 45] As in our
previous study[9] it was found that an estimate of S for variable
concentrations can be obtained by assuming a rigid-band
model (derived from the empty cage) and monitoring S as a
function of increasing Fermi energy. This is done by filling the
empty orbitals of the vacant lattice with � electrons, which
artificially increases the Fermi level, and recalculating S. This
function is plotted for three such hypothetical band fillings for
the Si40 lattice in Figure 8. The thermal power is almost 25
times higher than that of the fully loaded structure at 300 K
for the lowest doping level (�� 0.03 e per Si40 unit) and
falls off rapidly to only a factor of 10 for �� 0.5 e per Si40.
In practice, this would require extremely low doping levels,
which identical to the situation found for the phases based
on Si46.[9] Similar findings were made for the Ge40 and C40

phases.

Figure 8. Seebeck coefficient S as a function of temperature for Si40.
Values were obtained by using a rigid-band model with a Fermi level
determined by increasing the valence electron count by � electrons.

Thus, the X172 and X40 structures are likely candidates for
stable phases if they are synthesized with a combination of
large and small alkali metal cations. However, like X136 and
X46 the thermal power of these phases is low at maximum
doping; hence removal of alkali metal atoms after formation
would be required to maximize this property.

Conclusion

In summary, we have demonstrated a systematic way to
understand the evolution of the crystal structures of inter-
metallic and alloy phases in real space. Fundamental to this
approach is the realization that the metallic bond can be
thought of as a specific class of covalent bonding which is not
saturated by two electrons. Most importantly, there is a
practical benefit to this approach. One can sift through
various geometrical possibilities for a given stoichiometry and
perform a low-level calculation to aid in selecting low-energy
structures on the basis of local geometrical features. These
phases can then be modeled by first-principles calculations to
obtain high-quality numerical data for thermodynamic and
transport properties. Future investigations will center on
extending the theory to account for pressure effects and on
correlating elastic properties to local structural motifs.
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